

IMPLICATIONS OF AN UPDATED VOLCANOLOGICAL CONCEPTUAL MODEL AT LOS HUMEROS FOR GEOTHERMAL EXPLORATION AND MODELING

G. Giordano, F. Lucci, F. Rossetti, S. Urbani, V. Acocella Università Roma Tre

> Main Partner G. Carrasco UNAM

Thanks to authors of Deliverable 3.2: Consiglio Nazionale delle Ricerche (CNR): M. Bonini, D. Maestrelli, G. Corti, D. Montanari, G. Moratti, G. Norini, G. Gola, A. Manzella E. Trumpy, Università degli Studi di Bari Aldo Moro (UNIBA): D. Liotta British Geological Service (BGS): C. Rochelle, A. Kilpatrick, A. Lacinska, J. Rushton, S. Kemp, Technische Universität Darmstadt (TUDA): L. Weydt, K. Bär

Previous volcanology-based thermal model

Τε	emperature Field S	imulation unde	er Los Humer	os Calder	a 189)
Table 1. Some ph	nysical and chemical pa	arameters of Los H	lumeros volcanic	center (afte	r Verma, 1985b)	-
Formation/flow	Magma erupted (km ³)	Age (My)	Temp. °C	SiO ₂ %	Minerals left behind (km ³)*	1
Ol. basalt	0.25	< 0.02	1070	49	_	
Rhyodacdacites	10	0.03-0.02	910	5969	70 _г	H-7
El Valanazão galdera						<u>а b c d H-18 н-9</u> о b c d H-18 но H-9 но c d H-18 но H-9 но H-18 но H-9 но H-19 но H-9 но H-19 но H-9 но H-19 но H 19 но H 19 но H H
Cuicuiltic tuff	0.1			69–72	1	
Limón and other	4	0.04.0.02	040	54 50	20	
andesite	0	0.04-0.02	900	30-39	20	
Xovoctic tuff	0.1		890	65	2	
Cueva Ahumada lavas	0.1	0.06	0,0	05	-	× × \$10000000000000000000000000000000000
Los Potreros caldera	10	0.10	000 000	C 4 - 7 1	<i>(</i>)	* (()()()()()())*
Zaragoza ignimbrite	10	0.10	880-920	54-71	04	x x x x x x x x x x x x x x x x x x x
Zaragoza basal fall	2.0		800	/1	20	
??????						x Vertical scale x x x Horizantal scale
Faby tuff	10	0.24	875	69-73	100	•
Post-Xal. rhyolites	4.7	0.36-0.22		73–76	54	
Los Humeros caldera					\neg	
Xaltipan ignimbrite	115	0.46	800-875	69–77	(1200)	
Pre-Xal. rhyolites	0.1	0.47				
Teziutlán formation	60	3.5-1.6				

*The parameter "Minerals left behind (km³)" refers to the volume of crystals separated and left behind in the magma chamber and is based on a fractional crystallization model of Verma (1984).

Verma et al. (1990)

Previous volcanology-based thermal model

Table 2. Emplacement conditions for sensitivity evaluation of the Los Humeros geothermal field (LHC).

Longevity and volume of the deep magmatic heat source

Petrological modeling of the LHPCS magmatic heat sources: a window into present plumbing system

LH18 (Texcal lava) is characterized by textures typical of basalts erupted directly by the deep reservoir.

All LHPCS volcanic rocks do not show disequilibrium textures typical of assimilation and fractional crystallization (AFC) mixing processes.

The Rayleigh fractional crystallization (RFC) model

$$\sum r^{2} = \sum_{i=1}^{n} (b_{i}' - b_{i})^{2}$$

demonstrate that all LHPCS magmas, from basalts to trachytes, belong to the same line of descent and evolve through a progressive fractionation of the PI + Cpx + OI + SpI mineral assemblage.

Trachyandesites and trachytes represent different degrees of fractionation (RFC values in the range 45 %–74 %) starting from a Cpx-bearing basaltic source.

Geothermobarometry of the heat sources

Step-change volcanological conceptual model of the heat sources

GEMex

Volcanological conceptual model of the heat sources -

						LH 17°		LH5-2° (Los	LH18
	<mark>Xaltipan</mark>	Zaragoza	LH11,12	LH6°	LH27-2°	(Tepeya)	LH15° (Limon)	Potreros)	(Texcal)
	high-silica	rhyolite-	rhyolite		Trachyand	Trachyandesi	Opx-free		
Erupted Composition	rhyolite	andesite	(obsidian)	Trachyte	esite	te	Trachyandesite	Ol-Basalt	Ol-Basalt
Eruptive temperature*° (°C)	790-890		800	950	1050	1050	1050	1150	1250
DRE Erupted Volume (km3)	<mark>290</mark> "	15	0.03	0.1	1	1	1	0.2	
Age of eruption (ka)^	<mark>164</mark>	69	7	2.8	>7	>2.8	?	3.8	
Residence time of differentiated magma in shallow reservoir	<mark>5ka</mark> ^	ka	а	а	а	а	а	а	а
Amount of evacuation of shallow reservoir	complete*	complete*						?	
Residual volume >30 km (km3)	<mark>3600</mark>	161	0.3	0.2	1	1.2	1	0.02	
Residual volume 30-14 km (km3)	<mark>370</mark>	17	0.03	0.06	0.6	0.3			
Residual volume 14-7 km (km3)			0.05						
Residual volume <7 km (km3)	<mark>540</mark>	21	0.004	<mark>0.06</mark>	0.4			0.2	
Depth of top of shallowest transient reservoir [°] (km)	<mark><=7</mark>	<=7	<mark>1</mark> [H26]	3	<mark><7</mark>	<mark><7</mark>	>10	<mark><= 3</mark>	
Depth of top of shallowest fractionated/intrusive resident reservoir ^o (km)	<mark><=7</mark>	<=7		3			>10		
Temperature of shallowest fractionated/intrusive resident reservoir° (km)	1000	1000	1000	1000	1050	1050	1075	1150	
x-y area	200	100							
z-thickness	<mark>2.7</mark>	0.2							
Intrusion shape	cylinder	cylinder	sphere	sphere	sill	sill	sill	sill	sill
*Ferriz and Mahood 1986, J Petrol									
°Lucci et al 2020, Solid Earth									
"Cavazos & Carrasco Nunez 2020, JVGR									
^Carrasco Nunez et al. 2018, G-Cubed									

Implications for the heat sources

Implications for shallow structures

e.g. Loma Blanca bulge depth of source of deformation: T= 425 ± 170 m.

Implications for subsurface setting

Urbani et al. (2020) Solid Earth

<Roma Tre> <Giordano et al.>

Analogue caldera – Campi Flegrei

V. Di Renzo et al. / Journal of Vokanology and Geothermal Research 328 (2016) 210-221

- PETROLOGIC MODELING AT LH ALLOWED A STEP-CHANGE IN THE VOLCANOLOGIC CONCEPTUAL MODEL, FROM SINGLE MAGMA CHAMBER TO MULTILAYERED, TANSCRUSTAL RESERVOIRS
- UNPACKING AGE, VOLUME AND DEPTH OF THE MAGMATIC HEAT SOURCES IS THE FIRST ORDER NEED FOR GEOTHERMAL MODELING
- THERMAL MODELING OF HEAT CONDUCTION FROM THE MAGMA SOURCE MUST TAKE INTO ACCOUNT BOTH THE GEOMETRICAL CONSTRAINTS AND INCREMENTAL MASS BALANCES (RECHARGE vs WITHDRAWAL)
- THE CURRENT HEAT FLUX AT LH IS THE RESULT OF THE COMBINATION OF THE THERMAL RELAXATION OF THE XALTIPAN MAGMA CHAMBER + RECENT SHALLOWER INTRUSIONS + FRACTURE CONTROLLED FLUID ADVECTION
- MAGMATIC PRESSURE SOURCES THAT GENERATE BRITTLE DEFORMATION AND PERMEABILITY ARE POLYPHASED IN SPACE AND TIME
- DEVELOPMENT OF SHGS AT LH REQUIRES EFFORTS IN IMAGING THE VOLUME BETWEEN 7 AND 3 KM, WHERE MASS AND HEAT TRANFER HAVE OCCURRED DURING THE LAST 10 KA

Gabriele Calzolari (UniRoma Tre) Matteo Trolese (UniRoma Tre) Paromita Deb (Aachen Uni) CFE

Thomas Theye and Željka Žigovečki Gobac for assistance and suggestions during the EMPA and XRD analyses, Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Stuttgart, Germany

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 727550

"The content of this presentation reflects only the authors' view. The Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains."

