

The Ocean Patterns Indicator

Andrea Garcia Juan (<u>andrea.garcia.juan@ifremer.fr</u>), Kevin Balem (<u>kevin.balem@ifremer.fr</u>), Guillaume Maze (<u>guillaume.maze@ifremer.fr</u>)

LOPS (Laboratory for Ocean Physics and Satellite Remote Sensing), Ifremer

Presentation plan

- What is the Ocean Patterns Indicator?
- How a Profile Classification Model (PCM) works?
- Jupyter notebooks
 - Development notebook
 - Prediction notebook
- What are we doing next?

What is the Ocean Patterns Indicator?

PCM (Profile Classification Model): allows to automatically gather ocean profiles in clusters according to their vertical structure similarities. Depending on the dataset, such clusters can show space/time coherence: the ocean patterns indicators.

How a Profile Classification Model (PCM) works?

Gaussian Mixture Models method (GMM): decompose the probability density functions (PDF) of the dataset in to a sum of gaussian PDF.

Decomposing PDF in 5 gaussian PDF

Representation in nz dimensions

Maze et al, Prg.Oc, 2017

- The user should only chose the number of classes
- In the input there is no spatial or temporal information
- Probability of a profile to be in a class

How a Profile Classification Model (PCM) works?

Gaussian Mixture Models method (GMM): decompose the probability density functions (PDF) of the dataset in to a sum of gaussian PDF.

Decomposing PDF in 5 gaussian PDF

Maze et al, Prg.Oc, 2017

- Ocean Patterns Indicators are computed using the pyXpcm python software (see documentation at https://pyxpcm.readthedocs.io)
- For more information about the method see Maze et al, Prg.Oc, 2017.

Jupyter notebooks

Jupyter notebooks

Development notebook

- Model parameters: number of classes and variable
- Load training dataset: Data are loaded from Copernicus Marine Service (the user will need a CMEMS account)
- Create model
- Plot and metrics to optimize model

Save model

Prediction notebook

- Load model and dataset: The user can use the pretrained models or the one developed in the 1st notebook
- Predict labels: sort each profile of the dataset into a specific class
- Plot results

Save data

Prediction notebook

Vertical structure (quantiles)

Spatial distribution

Prediction notebook

Temporal distribution

Robustness

Examples of applications

Examples of applications

- Study of a region with natural boundaries
- Structure of frontal regions
- Model evaluation
- **%**

Maze et al, Prg.Oc, 2017

Jones et al, J. Geophys. Res, 2019

Rosso et al, J. Geophys. Res, 2019

Balem and Maze, 2019

To summarize

- The ocean patterns indicator is an easy way to analyse and explore an ocean region using Machine Learning
- PCM can be applied to all types of oceanographic profiles:
 - From 3D numerical simulations or in-situ observations
 - With one or more physical or biogeochemical variables

Feel free to play!

What are we doing next?

- Ocean regimes indicator
 - Classification of time series

D'Ortenzio et al, Biogeosciences 2009