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Abstract

Modelling human mobility is crucial in several areas, from urban planning to epidemic modeling, traffic forecasting, and what-if
analysis. On the one hand, existing models focus on the spatial and temporal dimensions of mobility only, while the social aspect is
often neglected. On other hand, those models that capture some social aspects of human mobility have trivial and unrealistic spatial
and temporal mechanisms. In this paper, we propose STS-EPR, a modeling framework that embeds mechanisms to capture the
spatial, temporal and social aspects together. Our experiments show that STS-EPR outperforms existing spatial-temporal or social
models on a set of standard mobility metrics. STS-EPR, which is open-source and tested on open data, is a step towards the design
of a mechanistic models that can capture all the aspects of human mobility in a comprehensive way.
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1. Introduction

Mobility data are crucial in different contexts, such as computational epidemiology, traffic forecasting, urban plan-
ning, what-if analysis, and the design of protocols for ad hoc and opportunistic networks [3, 6, 8, 13, 17, 19]. Un-
fortunately, privacy implications restrict sharing mobility datasets because they contain sensitive information about
the individuals whose movements are described [10, 9, 15, 16]. A way to overcome this issue is to design generative
mobility models [8, 3], i.e., algorithms that generate synthetic trajectories that reproduce human mobility patterns.

Most individual models focus on capturing the spatial patterns, such as the power-law distribution in jump lengths
and characteristic distances [4, 6, 11] and the tendency to return to locations visited before [6, 11]. For example, the

∗ Corresponding authors: Giuliano Cornacchia, Luca Pappalardo
E-mail address: giuliano.cornacchia@phd.unipi.it, luca.pappalardo@isti.cnr.it

1877-0509© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Author name / Procedia Computer Science 00 (2021) 000–000

Exploration and Preferential Return model (EPR) [18] is based on two competing mechanisms: exploration, a random
walk process with truncated power-law jump length distribution; and preferential return, which reproduces humans’
propensity to return to previously visited locations. Among the mechanistic models that improve EPR by adding
increasingly sophisticated mechanisms [12, 2, 1], TimeGeo [7] and DITRAS [13] embed a temporal mechanism that
captures the circadian propensity to travel. The social dimension of human mobility is often neglected in EPR-like
models, although about 10-30% of human movements has social purposes [5]. As an exception, GeoSim [20] use an
individual preference and social influence mechanism, but its spatial and temporal realism is limited.

In this paper, we propose STS-EPR (Spatial, Temporal, and Social EPR), a model that combines: (i) a mechanism
that takes into account the spatial distance between locations and their collective relevance [17, 14]; (ii) a temporal
mechanism to capture the individuals’ tendency to follow a circadian rhythm [13]; (iii) a mechanism that models the
social dimension of human mobility [20]; (iv) an action-correction mechanism that deals with borderline cases during
the simulation. We conduct experiments using check-ins of thousands of users in three cities worldwide and show that
STS-EPR’s trajectories are realistic with respect to several spatial, temporal, and social aspects of mobility.1

2. STS-EPR model

We define a mobility trajectory as a sequence T = 〈(r1, t1), . . . , (rn, tn)〉 where ti is a timestamp (∀i ∈ [1, n); ti < ti+1)
and ri = (xi, yi) where xi and yi are coordinates on a bi-dimensional space [8]. We assume that agents move on a
spatial tessellation L, representing a bi-dimensional space’s tiling, resulting in a non-overlapped set of locations. Every
location has a weight corresponding to its collective relevance and as a representative point the tile’s centroid expressed
as a pair of coordinates: L = 〈(r1,w1), . . . , (rn,wn)〉 where w j is the weight of the tile j and r j its representative point.
We represent an agent’s a visitation pattern as a location vector lva of |L| locations. The vector’s j-th element, lva[ j],
contains the number of times a visited r j. We assume that an agent’s network of contacts G influences their movements.
G = (V, E) is a graph where V is the set of agents and E the social ties between them.

STS-EPR takes as input the number N of synthetic agents, the spatial tessellation L, the undirected graph G, a
mobility diary generator MDG, and the time interval of the simulation. The model outputs N synthetic trajectories.
STS-EPR consists of four phases: initialization, action selection, location selection, and action-correction (Figure 1).
After the initialization phase, the agents execute the action selection, the location selection, and the action-correction
phases until a stopping criterion is satisfied (e.g., the number of hours to simulate is reached).

Initialization. Each edge’s weight in G indicates the mobility similarity of the linked agents (the cosine similarity
of their location vectors). The weights are initialized to 0 and updated during the simulation. The model assigns
to each agent a mobility diary produced by MDG, a Markov model that captures the individuals’ probability to
follow or break their routine at specific times of the day [13]. A mobility diary MD for an agent a is defined as
MDa = 〈(ab0, t1), (ab1, t2), . . . (ab j, t j+1), (ab0, t j+2), (ab1, t j+3) . . . )〉, where ab is an abstract location, ab0 denotes a’s
starting location, ti is a timestamp. The probability p(ri) for an agent of being assigned to a starting physical location
ri ∈ L is ∝ wi, where wi is the location’s relevance. Each agent moves according to its mobility diary’s entries at the
time specified. If the current abstract location is ab0, the agent visits the starting location; otherwise, abi is converted
into a physical one through the following steps.

Action selection. When moving, an agent can select between two competing mechanisms: exploration and prefer-
ential return. Exploration models the decreasing tendency to explore new locations over time [17]. Preferential return
reproduces individuals’ propensity to return to locations they explored before [17]. An agent explores a new location
with probability Pexp = ρS −γ, or returns to a previously visited one with a complementary probability Pret = 1−ρS −γ,
where S is the agent’s number of unique visited locations and ρ = 0.6, γ = 0.21 are constants [17]. At that point,
the agent determines whether or not the location’s choice will be affected by the other agents, selecting between the
individual and the social influence mechanisms. With a probability α = 0.2, the agent’s social contacts influence its
movement [20]. With a complementary probability of 1 − α, the agent’s choice is not influenced by the other agents.

Location selection. At this point, the agent decides which location will be the destination of its next displacement.
The sets of locations an agent a can visit or return are expa = {i | lva[i] = 0} and reta = {i | lva[i] > 0 ∧ i , sa},

1 The code to reproduce our model and the experiments is available at: https://github.com/kdd-lab/2019_Cornacchia
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Fig. 1. A schematic description of STS-EPR. First, when an individual moves according to the entry in its mobility diary, if the abstract location
is ab0 the individual returns to its starting location, otherwise it decides whether to explore a new location or return to a previously visited one.
At that point, the agent determines whether or not its social contacts affect its choice for the location to visit next. If the selected action cannot be
performed, it is corrected with an executable one (dashed arrows indicate action corrections).

respectively, where sa denotes the index of the starting location of agent a. The visitation frequency of a to a location
ri is: fa(ri) = lva[i]∑|L|

j=1 lva[ j]
.

• Individual Exploration: a chooses a new location to explore from expa. Individuals are more likely to move
at small rather than long distances but also take into account the location’s collective relevance [13]. We use
the gravity law to couple distance and relevance [12]. If a is currently at location r j, during the Individual
Exploration action selects an unvisited location ri, with i ∈ expa, with probability p(ri) ∝

wiw j

d2
i j

, where di j is the

distance between locations ri and r j with relevances wi, w j.
• Social Exploration: a selects an agent c among its social contacts in G. The probability p(c) for c to be selected

is proportional to the mobility-similarity between them: p(c) ∝ mobsim(a, c). After the contact c is chosen, the
candidate location to explore is an unvisited location for a that was visited by c, i.e., the location is selected
from set A = expa ∩ retc; the probability p(ri) for a location ri, with i ∈ A, to be selected is proportional to the
visitation pattern of c, namely p(ri) ∝ fc(ri).
• Individual Return: a picks the return location from the set reta with a probability proportional to its visitation

pattern. The probability for a location ri with i ∈ reta to be chosen is: p(ri) ∝ fa(ri).
• Social Return: c is selected as in the Social Exploration action from the set A = reta ∩ retc; the probability

p(ri) for a location ri to be selected is proportional to the visitation pattern of the agent c, namely p(ri) ∝ fc(ri).

Action correction. The set of possible locations an agent can reach is limited. For example, it may happen that
the agent visited all locations at least once and there are no locations to explore. To comply with these constraints, we
include an action-correction phase, executed if the location selection phase does not allow movements in any location.

• No location in social choices: If an agent a decides to move with the influence of a social contact c but reta ∩
retc = ∅ or expa ∩ retc = ∅ (no locations visited by both c and a or no locations visited by c and unvisited by
a), we execute an individual action preserving a’s choice to explore or return.
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• No new location to explore: When an agent a decides to explore but it visited all the locations at least once
(expa = ∅), we force the agent to make an Individual Return.
• No return location: If an agent a, currently at location ri, decides to perform an Individual Return, and ri is the

only location visited so far (besides the starting location), it cannot return to any location (reta = ∅). We force
a to make an Individual Exploration.

3. Results

We simulate the mobility of 1001, 622, and 4396 agents in New York City, London, and Tokyo, respectively,
using STS-EPR, DITRAS [13], and GeoSim [20]. For each city, we compare the synthetic trajectories with real ones
extracted from Foursquare checkins [21]: New York City has 1001 users, 37,4891 checkins and 1755 edges; London
has 622 users, 14,895 checkins and 1185 edges; Tokyo has 4396 users, 231,471 checkins and 18,183 edges. We
evaluate the models’ realism with respect to the distribution of:

• Jump Length ∆r, the distance between two consecutive locations visited by an individual [6, 11];
• Radius of Gyration rg, the typical distance traveled by an individual during the period of observation [6, 14];
• Visits per Location Vl, the relevance of a location described as its attractiveness at a collective level;
• Location Frequency f (ri), the probability of visiting a location ri [6];
• Waiting Time ∆t, the elapsed time between two consecutive visited locations;
• Entropy Eunc, the predictability of the movements of an individual u [18];
• Activity per Hour t(h), the number of movements made by the individuals at every hour of the day [13, 7];
• Mobility Similarity mobsim, the cosine-similarity of two individuals’ location vectors [20, 5, 21];

We quantify the similarity between each measure’s distributions for real and synthetic trajectories using the Kull-
back–Leibler divergence (KL). Table 1 reports our results.

Regarding the spatial measures, ∆r and rg, STS-EPR is more realistic than GeoSim, which cannot reproduce neither
the ∆r distribution (Figures 2(a), 2(e) and 2(i)) nor the rg distribution. STS-EPR is also slightly more realistic than
DITRAS concerning ∆r, except for New York City (Table 1). DITRAS is the best model concerning rg, with the
exception of Tokyo, where DITRAS and STS-EPR achieve similar scores. GeoSim generates trajectories with the
most realistic distribution of f (ri) but fails in reproducing the Vl distribution (Figures 2(b), 2(f) and 2(j)). STS-EPR
is more realistic than DITRAS on f (ri), and for Vl the KL scores of STS-EPR are 58.62% (New York City), 27.73%
(London), and 79.47% (Tokyo) better than DITRAS.

The temporal measures, ∆t and t(h) (Figures 2(c), 2(g) and 2(k)), are better reproduced by STS-EPR and DITRAS,
since they use the same temporal mechanism (MDG). The small fluctuations of the scores obtained from these two
models are caused only by the pseudo-random nature of each execution. Although GeoSim can reproduce the ∆t
distribution, it fails in reproducing t(h) because its trajectories that do not follow the circadian rhythm.

Regarding the distribution of the social measure mobsim, STS-EPR reproduces it better than GeoSim, especially
for Tokyo (KL=0.01, Table 1), presumably because the social graph of users in Tokyo is the largest in terms of nodes
and edges, giving a more realistic representation of the individuals’ sociality. STS-EPR can capture the distribution’s
trend better than GeoSim; the latter can reproduce correctly the distribution only for values ≤ 0.25 (Figures 2(d), 2(h)
and 2(l)). None of the models can replicate the distribution of Eunc, though the best one is this sense is STS-EPR. The
results for New York City, London, and Tokyo (Table 1) are consistent, suggesting that STS-EPR do not depend on
the specific characteristics of the geographic area.

4. Discussion

STS-EPR models human mobility considering the spatial, temporal and social dimensions. Our results show that
STS-EPR can generate realistic trajectories for all the three dimensions. It is worth noting that the inclusion of the
social dimension in STS-EPR help improve the realism with respect to the spatial and temporal measures. This result
highlights the importance of sociality: though often neglected in generative mobility models, it is essential to model
properly individual human mobility. Modeling the social dimension together with the spatial and temporal ones is
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Fig. 2. Distributions of four human mobility measures (columns) referred to different cities (rows) computed for real and generated trajectories.
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GeoSim
0.5036
±0.0075

4.9381
±0.0932
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±0.0001

4.427
±0.0069

0.1962
±0.0043

0.281
±0.0003

8.5182
±0.0003

0.6097
±0.0079

DITRAS
0.0221
±0.0022

0.1813
±0.0239

0.1094
±0.0

0.1428
±0.006

0.166
±0.0031

0.0119
±0.0004

3.8816
±0.1897

-
-

STS-EPR 0.0108
±0.0016

0.4609
±0.233

0.0097
±0.0003

0.1032
±0.0126

0.1626
±0.0035

0.0116
±0.001

2.6749
±0.1169

0.2543
±0.01

To
ky

o

GeoSim
0.7257
±0.002

4.8165
±0.0042

0.0002
±0.0

3.0957
±0.0148

0.2354
±0.0003

0.2837
±0.0006

7.1242
±0.0593

0.0931
±0.0017

DITRAS
0.0628
±0.0025

0.2417
±0.0171

0.1409
±0.0

0.1101
±0.0048

0.2007
±0.003

0.0074
±0.0001

5.0034
±0.2708

-
-

STS-EPR 0.0485
±0.0013

0.2504
±0.0746

0.0108
±0.0002

0.0226
±0.0019

0.2001
±0.0024
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±0.0001
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±0.0009

N
ew

Yo
rk

C
ity GeoSim

0.5947
±0.0062

5.3913
±0.0051

0.0071
±0.0004

3.6418
±0.0069

0.1973
±0.0004

0.18
±0.0005

8.0483
±0.0579

0.5879
±0.0149

DITRAS
0.0091
±0.0006

0.2987
±0.0359

0.193
±0.0026

0.1281
±0.0044

0.1665
±0.0032

0.0066
±0.0003

4.8881
±0.0248

-
-

STS-EPR 0.0188
±0.0015

0.3886
±0.0284

0.0318
±0.0008

0.0531
±0.004

0.1705
±0.0047

0.0071
±0.0005

5.028
±1.1511

0.3066
±0.0044

Table 1. Results London, Tokyo and New York City. For each measure we show the KL divergence and its standard deviation. Best results in bold.



6 Author name / Procedia Computer Science 00 (2021) 000–000

crucial in many disciplines. For example, in computational epidemiology both movements and social contacts may be
exploited to model the spreading process. Future work regards the evaluation of STS-EPR’s realism on a wider range
of features. In the meantime, our model is a step towards the design of a mechanistic models that can capture all the
aspects of human mobility in a comprehensive way.
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