

Estimating the source-location accuracy in the geothermal site of Los Humeros (Mexico) using sensitivity maps for time-reverse imaging

Claudia Finger (born Werner)^{1,2}, Erik H.Saenger^{1,2}

¹International Geothermal Center Bochum, Germany ²Ruhr University Bochum, Germany

claudia.werner@hs-bochum.de

Why Time-Reverse Imaging (TRI)?

Los Humeros geothermal field

Los Humeros geothermal field: model set-up

imaging conditions

total energy density:

$$\mathbf{I}_{e}(\mathbf{x}) = \max_{t \in [0,T]} \sum_{i} \sum_{j} \left[\sigma_{ij}(\mathbf{x}, t) \, \varepsilon_{ij}(\mathbf{x}, t) \right]$$

P-wave energy density:

$$\mathbf{I}_{p}(\mathbf{x}) = \max_{t \in [0,T]} (\lambda + 2\mu) [\nabla \cdot \mathbf{u}(\mathbf{x}, t)]^{2}$$

S-wave energy density:

$$\mathbf{I}_{S}(\mathbf{x}) = \max_{t \in [0,T]} \mu \left[\nabla \times \mathbf{u}(\mathbf{x},t) \right]^{2}$$

x: space vector -t: time $-\mathbf{u}$: displacement $-\lambda$, μ : Lamé parameters $-\sigma_{ij}$: stress $-\varepsilon_{ij}$: strain

Saenger (2011), NDT&E International

eliminate background noise

Removing artificial high amplitudes

north in km

eaet in K

back propagate

eliminate background noise

find source localisations

→ imaging conditions

total energy density:

$$\mathbf{I}_{e}(\mathbf{x}) = \max_{t \in [0,T]} \sum_{i} \sum_{j} \left[\sigma_{ij}(\mathbf{x}, t) \, \varepsilon_{ij}(\mathbf{x}, t) \right]$$

P-wave energy density:

$$\mathbf{I}_{p}(\mathbf{x}) = \max_{t \in [0,T]} (\lambda + 2\mu) [\nabla \cdot \mathbf{u}(\mathbf{x}, t)]^{2}$$

S-wave energy density:

$$\mathbf{I}_{s}(\mathbf{x}) = \max_{t \in [0,T]} \mu \left[\nabla \times \mathbf{u}(\mathbf{x}, t) \right]^{2}$$

x: space vector -t: time $-\mathbf{u}$: displacement $-\lambda, \mu$: Lamé parameters $-\sigma_{ij}$: stress $-\varepsilon_{ij}$: strain

Saenger (2011), NDT&E International

compare to initial sources

Automatic identification of localisations

- found localisations (larger circles are closer to source depth)
 original source location
- identified source location

How to create Sensitivity Maps

place numerous sources throughout the model following some guidelines:

- inter-source distance > maximum inter-station distance (here: > 2.1 km)
- 2) sources in only one depth per simulation
- 3) not too closer than 2 S-wave wavelengths to boundary

Then locate these sources with TRI and investigate the achieved spatial and temporal error.

A fast way to evaluate the location accuracy with a given station distribution and velocity model.

Sensitivity Maps for the geothermal site Los Humeros

Accuracy is influenced by: station distribution, velocity model & source type.

Located real-life micro-seismic event (magnitude ~2.2)

recorded 2018/04/22 with 21 stations

After muting areas with insufficient accuracy and elimination of unrealistic localisations: 2 localisations in I_e , 1 localisation in I_p and 4 localisations in I_s .

Sensitivity Maps allow the localisation of real-life events

Conclusions

Work flow for the evaluation of source-location accuracy using TRI

→ Sensitivity Maps ←

work flow:

user-independent
low computational costs
intuitive results

application:

evaluate existing networks

plan and optimise new networks

enhance localisation of real-life events

next steps:

Compare to localisations from other methods Identify source type

Acknowledgements

www.rockphysics.org

The authors would like to acknowledge the **Comisión Federal de Electricidad (CFE)** for kindly providing support and advice and for granting access to their geothermal fields for the deployment of the seismic stations.

We also acknowledge our **Mexican and European colleagues** for their help and collaboration in deployment, maintenance and retrieval of the stations.

This project received funding from the **European Unions Horizon 2020** research and innovation program under grant agreement no. 727550.

The authors gratefully acknowledge the **Gauss Centre for Supercomputing** e.V for funding this project by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).